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1. OVERVIEW OF THE SOCRATES CODE

The direct simulation Monte Carlo method, as pioneered by G. A. Bird,' provides a
powerful technique for the simulation of real gas flows. It bridges the gap between continuum and
free molecular flow, retaining validity in either extreme. It can be used to describe complex
mixtures, including effects of chemical reactions, heat conduction, viscosity and diffusion for flows
in three dimensions. This report describes the application of this technique to the contamination
problem, considering flow fields created by the interaction of a spacecraft with the atmosphere.
The resultant model has been named the SOCRATES code, which is an acronym for
Spacecraft/Orbiter Contamination Representation Accounting for Transiently Emitted Species.

Contamination of instruments on space platforms is an issue of major concern. The shuttle,
for instance, gives off matter through surface outgassing, via various thrusters, and from flash
evaporators. At altitudes where the atmospheric mean free path is comparable to or less than
vehicle dimensions, the deposition back onto instruments will be largely determined by the multiple
collision environment surrounding the spacecraft. Even at higher altitudes, this may be the
dominant source of contaminants for some portions of the vehicle. In addition to physical
contamination of shuttle surfaces, “radiation contamination” is also g potential problem as guses
surrounding the spacecraft colfide at high speed with atmospheric molecules. These energetic
collistons can {ead w vibrational, rotational, and electronic excitation and subsequent radiative

~decay. lons in the vehicle environment may remain there for some time due w electric field forces,
and radiative recombination is another potential source of radiation contamination. The situation is
depicted schematically in Figure 1.

Spectral Sciences, Inc, (SSI) has developed this fiest module of a three-dimensional
description of the flow field around a spacecraft so that contamination can be accurately
characterized and understood. A comprehensive model of the contaminant field surrounding the
space shuttle orbiter, for instance, is crucial to the design of experiments which are to fly ou the
shuttle and o the development of procedures for minimizing the contamination. The code is
designed in a highly modularized fashion so that additional physical and geametric complexity can
e added as deemud necessary without requiring major rewriting of the model.  The first module of
SOCRATES emphusizes the gaseous interactions and their emissivns. It is possible o put the
results of this code wogether with 2 surface model W get  realistic picire of how a vehicle looks in
the context of the guseous emission it produces.

Work has also progressed on adding an inner solution capability to SOCRATES, so that the
detailed interaction of the flow field with the vehicle will be accurately described. This work is
described in this report, but will be implemented in the second module of SOCRATES.
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Figure 1. A Schematic Representation of the Major Elements of the Shuttle
Contamination Problem.

Thoe basic culculational technique is well described by its originator in Reference 1.
However, there have been significant extensions of the method since the publication of Reference
1. The present purpose is to describe how the technigue Is implemented in SOCRATES; but
clementary concepts and relations which are essential to u cohurent explunation are included here
also,

The direct simukition Monte Carlo method involves storing a discrete number of molecules
(via their velocities, positions, and other pertinent information) in a computer.  The solution region
is broken Lp into a number of separate cells, and the solution is stepped forward in time in a two
- stage process. First, the molecules are advanced along their trajectorics by un amount appropriate
to their velocity and a time increment, At,. In this first stage some molccules will leave the
solution region, and some will be introduced as determingd by the boundary conditions for a
particular problem. The second stage is to simulate collisions in each cell appropriate to At so
that collision frequencies are propecly simulated. A basic hypothesis of the method is that if the
time step is made small envugh, the processes of translativas and collisions can he uncoupled in this
inanner. ,




Pericdically, the solution is sampled by accumulating statistical sums of number densities,
velocities and other basic properties. The solution is run repeatedly until statistical deviations are
reduced to a desired limit, and then physically meaningtul output quantities are computed from the
statistical sums. The number of molecules represented is typically many thousand at a time, which
is vastly fewer than the number occurring in virtually all real flows. Hence, the construction of a
dynamically similar flow to be simulated in the computer is an essential feature of the method.

The logical flow of the solution procedure is shown in Figure 2, which includes the steps
described above. The foilowing sections describe in detail the implementation of each of the boxes
shown in Figure 2 and the application of the code to some sample problems.
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Figure 2.

A Diagram of the Busic Solution Procedure Utilized for Steady State
Solutions in the SOCRATES Contamination Model.
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2. GRID COORDINATES AND GRID STRUCTURE

As discussed in Section 1, the Monte Carlo procedure works by breaking the calculation
region up into cells. A solution cell should be a region in which no properties change greatly, i.e.,
the dimensions of a cell should ideally be small compared to the local scale length of the flow field.
Collisions are simulated on a cell-by-cell basis, and molecules can experience collisions only with
other molecules in the same cell. There is no other spatial criterion used for determining collision
partners, so the cell determines the collision environment for any molecule within it. In addition to

- defining the collision environment, the other major function of the cell structure is to determine the

points at which output is generated. There is no requirement that the cells be divided up in the
same coordinate system used in the molecular state vector.

For Monte Carlo calculations, as for other types of computational fluid mechanic analyses,
the selection of grid geometry is a critical requirement which is often more of an art than a science.
Considerations in the selection of a grid are:

® The grid should be as simple as possible, since the program must repeatedly
decide which cell molecules reside in as they move throughout the solution
region. If this determination required the solution of a complex equation or
sifting through tables, the entire program would run significantly slower than it
the cell can be determined easily.

® The grid should concentrate cells where gradients are the largest, so that the
least number of total cells (and molecules) are needed to obtaln an accurate
solution.

® The grid should provide flow field information where it Is required, with the
resolution that is desired for the answer of interest.

The SOCRATES grid structure is a simple extension of the basic Cartesian coordinate

system that is used elsewhere in the code. The cells are determined by the intersection of three

<
SR

‘families of planes, each family being perpendicular to one of the coordinate directions. For each
- coordinate, there is a plane at zero and subsequent planes proceed outward in the plus and minus

coordinate direction. For instance, the intersection points, X;, On the positive x axis are given by

x exp(jB/N) - | - (l)

K e op®) - T

) where x,,,, is the pbsition of the last plane (the edge of the solution region in that direction), N is

- the-number of planes intersecting the positive x axis, and B is an adjustable parameter. For B

. approaching zero, successive planes have equal spatial increments; and as B is increased the planes

become more concentrated near the origin. The same relwion Is applied for planes intersecting the

~ minus x direction, with x,.,, being replaced by x,,;,. The other four directions (+y and tz) are

-5.




handled in an analogous fashion. Note that the B and N parameters are specified separately for
each of the six directions away from the origin, depending on the physics of the problem under
consideration. These values can be input by the user or automatically selected by the program.
The SOCRATES grid structure fulfills the objectives enumerated above to a substantial degree.
The relations for cell boundary locations are easily inverted to obtain the cell number
corresponding to a given position, and the parameter of the distribution allows for concentration of
cells in the inner region while allowing larger cells further out where the gradients are less severe.

A sample cell structure resulting trom this technique is illustrated in Figure 3. For visual
clarity, the number of planes has been limited to two in each of the six directions, since this is the
fewest number which illustrates the uneven spacing. A typical calculation would have several
times that many planes, but the figure is difticult anough to interpret as it is. A vehicle can be
arbitrarily located within this cell structure; though it should be located near the center of the grid
structure for it to make sense. Similarly, the wind direction as seen from the shuttle can come
from any direction whatsoever; there is nothing in the cell structure or coordinate definition which
restricts it.

Y

i s namd

Figure 3. A Schematic Showing the Bieic Design of the SOCRATES Cell Structure
Which Uses Cartesian Courdinutes with Uneven Spacing.




3. GAS MODEL AND EQUILIBRIUM REFERENCE PROPERTIES

3.1 Preliminary Equilibrium Gas Relations

The far field equilibrium state has properties which are of relevance to the flow field
interaction problem to be solved. In addition to serving to define the proper outer boundary
conditions, the far field serves to define length and veiocity scales for the problem which are then
used to non-dimensionalize the internal code variables. Even if this were not done, it would
provide an important comparison case for densities, velocities, collision frequencies, etc.

" For a rest gas in equilibrium, the normalized distribution function for the relative speed, c,,
between molecules of species i and molecules of species j is given by?

fyle) = @clad V) expl-aged) @)
where

T .——“”—— (3)

% % IRT.

and p;; Is the reduced mass of the pair; i.e.,

m;m,
Hy = m+m 0

with m; and m; representing the masses of the two species. In these relations, T, is the far field
temperature and Ry is the universal gas constant. (Rg is used instead of Boltzmann's constant since
~ the molecular masses will be consistently represented in atomic mass units rather than grams.) The
avallable translational collisional envrgy between the two molecules, E,, Is given by

A | (5)

3.2 Analytical Form of the Collision Cross Section

Whenever the direct simulation Moite Carlo method is upplied, it is necessary to make
trade-offs between accuracy and simplicity in molecular models. | does no good to use a complex
molecular potential surface and then find that reusonable computer run times result in very large
statistical fluctuations in the output. Since the final output will retlect errors in the stutistics as well

..




as errors in the models, there is a strong impetus to use models which contain the essential physics,
but whizh can be applied in a computationally efficient manner. The current state-of-the-art is the
Variable-Hard-Sphere (VHS) model.? In this model molecules have a collision cross section which
varies as an inverse power of the available collision energy. Hence, if oj is the collision cross
section for ¢ollisions of species i with species j, then y; is given by a relation of the form

g

G = AES ©)

where A;; is a constant coefficient. It follows that the effective diameter for molecules of species i,
d., is implicitly defined as a function of available collision energy by the relation

o = xdf = AES . | ™
* Aj; can be determined from & reference cross section and velocity via

Ay = logmeli)le ®)
_ If a reference cross section is given for a reference temperature rather than a reference velocity,
- then the usual choice for the reference velocit: is that velocity which has a collision energy equal

to the mean collision energy occurring in collisions at the reference temperature. Mathematically,
this is equivalent to -

<Cr30ﬁ>
<C'0u> v

D = )

where the angle brackets " indicate averages taken over ti¢ distribution function given in
Equation (2) evaluated for m;=m, and To, =Ty Equation (9) car be simplitied to give

. 4Q-wRgT o
B = SRt | (10)
(] . : . - .

~For ‘simulations involving a large number of species, 1oference cross sections are frequently
‘not- avallable for all possible.collision pairs. In thic case it is possible to specify A;; for
solf-collisions only, and then use:Equation (7) to get a molecular diameter as a function of collision
energy. Then, applying the relution

o = =l +)2f , (1)




the coefficient in Equation (6) for interspecies collisions is given by
1
Ay = [3(VA; + VAP . (12)

For the internal workings of a Monte Carlo code, it is usually more convenient to express
the collision cross section as a function of the relative collision velocity rather than the collision
energy. This is simply achieved via the relation

o; = By , (13)
where
By = Ajly/2)® . (14)

The parameter w can be related to 5, the exponent of distance in an inverse power
intermolecular force law via the relation?

w=-;-2;-!— . (15)

Hence, hard sphere molecules (for which n goes to infinity) are represented by w equal to zero.
There is a substantial body of evidence, howevsr, that the effective size of molecules does indsed
decrease with increasing collision energy, so a positive value of w is usually a better choice. w can
be determined from molecular beam data, or from its macroscopic implications. For example, if s
is the exponent for the variation of the viscosity coefficient with temperature, then it can be shown?
that

s =w+05 , (16)

s0 a measurement of the temperature dependence of the viscosity coetficient serves as an indirect
determination of w.

In order to incorporate the model for internal energy transfer to be discussed in Section 8, it
is necessary that w be assumed the same for all inteructions. This represents one of the major
restrictiors in the current state of modeling.

Although the sizes of molecules are allowed to vary in the VHS model in deciding whether
or not a collision is to oceur, when a collision does occur the post collision velocity components
are computed as if it were a hard sphere coliision (see Section 8). This results in a substantial
computational simplification and yet retains good agreement with the macroscopic predictions of

.9.




the more exact model.? (See Reference 1 for a discussion of molecular scattering for general
power law potentials.)

3.3 Equilibrium Reference Properties for a Multi-Component Gas

One advantage of the VHS model is that the molecules have a well defined cross section, so
it is possible to define a mean free path without putting limitations on the minimum deflection
angle that is considered. As is the general case for multi-component gases, however, each
component has its own mean free path, and the overall mean free path for the mixture must be
defined as a weighted average of the mean free paths of the individual species. The somewhat
cumbersome relations required to calculate the overall mean free path are given here. It should be
noted that the mean free path is calculated only once for a given problem, so the computational
effort required to evaluate it is completely negligible.

An individual molecule of species i will suffer collisions with molecules of species j with a
frequency v; given by

Vﬁ = njo,<oijc,> , (17
where n;,, is the number density of species j and <oyc,> is the average product of cross section

times relative velocity for the two species, obtained by integrating over the distribution function
given in Equation (2). When this operation is performed, the result is

v = By T2 -l vVE (18)

where I' denotes the gamma function.
The total collision frequency for an individual molecule of species i, »;, is obtained by
summing Equation (17) over all species, i.e.,
y = Y o (19
=1

and the mean free path, N;, for molecules of species i is given by

<o
N = —,:'- = ;f;VSRoTo./(rmo ' (20)




where <¢;> is the mean molecular speed for species i molecules. The mean free path for the gas
mixture, Ao, is then defined as the number density weighted average of the \; via

N oA
No = 2—1- , @1
ncn
i=1
where n,, is the total number density:
e = i:nia : (22)
i=1
A useful velocity scale is given by v,, defined by
v, = V2R, T /<m> , 23)

where <m> is the reference mean molecular weight, i.e.,
;M
<m> = ﬁ_‘f’_‘ . (24)

v, is the most probable molecular speed for molecules of the mean molecular weight at the
reference temperature,

3.4 Internal Energy Model

The current state of modeling for internal energy effects in Monte Carlo flow field
simulations is the phenomenological mode! of Borgnakke and Larsen* In this model, transfer of
energy between internal and translational modes is allowed, but it is necessary to assume that each
species has a fixed number of internal degrees of freedom, §j. This is equivalent to assuming a
constant specific heat, Cy;, for each species which can be related to the number of internal degrees
of freedom via

C.m:
g = z_%oﬁ.s ‘ 25)

A'.ernatively, §; can be related to the ratio of specific heats for species i, v;, by the relation




f = — . (26)

The interchange of internal and translational energy will be discussed in Section 8, and the
selection of initial conditions will be discussed in Section S.

<12 -




4. INTERNAL REPRESENTATION

4.1 State Vector

Each simulated molecule in the SOCRATES code is represented by a state vector which
comprises all of the information the code has with regard to that particular molecule. The state
vector has:

®  Position elements defining the location of the molecule in Cartesian coordinates.

®  Three velocity elements, giving the corresponding velocity components in the
same coordinate system.

® A value for the internal energy (usually rotational) of the molecule. Note that
the basic model does not discriminate between internal modes for a particular
species. This can be done, if desired, by introducing separate species for the
distinct modes.

® An indicator identifying the molecular species. This indicator in turn implies ali
of the properties associated with that species (molecular weight, number of
internal degrees of freedom, name, etc.).

®  An indicator giving the computation cell in which the molecule currently resides.
(This could be calculated from its position, but it is needed so often in the
calculation that the extra storage location is justified by the increase in
efficlency.)

® A time element, glving the time at which the molecule will strike a solution
surface element {f it continues on its current trajectory.

4.2 Reduction to a Reasonable Number of Simulated Molecules

It is clearly impossible to run a computer simulation with anywhere near the same number
of molecules that exist in the actual flow problem, The adjustment that is made to make the
simulation possible is to artificially increase the cross section, and decrease the number density, by
the same large factor. It is the product of number density and cross section which determines the
collision frequency for a given molecule, and it is the collision frequency which must be correctly
simulated if the correspondence between the real and simulated flows is to be accurate. ‘This is an
essential feature of the direct simulation method which has not always been adequately emphasized.
It means that the internal scaling factors do not proceed on a strictly dimensional basis. For
example, the scaling factor for cross sections is not the square of the sculing factor for lengths.
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4.3 Internal Scales

Many problems are more reasonably handled if the internal calculations are carried out with
scaled or dimensionless values. This avoids possible problems such as numerical overflow which
can cause an execution time error. Such errors can be particularly insidious and difficult to locate
in a code whose very essence involves the random combination of numbers.

The output is produced in physically meaningful dimensional form. Hence, the scaling that
is discussed here is irrelevant (or nearly so) to the interpretation of code output; it is strictly a
matter of the internal representation.

The choices for length and velocity scales are A, and v, as defined in Section 3, which are
used to non-dimensionalize the position and velocity elements of the state vector. There is no need
to provide further non-dimensionalization of mass beyond representing them in atomic mass units,
so none is provided. Hence, the scaling factor for energy is just vi, which is used to
non-dimensionalize the internal energy element of the state vector.

Number densities are scaled with respect to the far field ambient number density, n,,, which
leaves only the cross sectior scaling factor to be determined. This factor follows from the
condition of flow similarity, which requires that the probability of a molecule suffering a collision
in traveling a given path length be accurately simulated. This dimensionless probability can be
expressed as the product of a cross section times a number density times a path length (at least for
small enough path lengths), and it is required that this product be the same for dimensional and
scaled representations. This implies that the product of the scaling factors for these three quantities
be unity and, therefore, that the cross section scaling factor be 1/(neAo). The internal scaling
factors used in SOCRATES are summarized in Table 1.

Table 1. Scaling Factors Used for the Internal Representation of
Quantities in the SOCRATES Code. All Variables are
Defined in Section 3.

PROPERTY SCALING FACTOR
Length oooviiviininnnin, A

Velocity .oovvenniiiininininn v,

Time ...... Kabisassensbanbeass Aalv,

Number Density ............ Ny

Mass ..o amu.

Energy ......oovviiniiniininnn (a.m.au)vy

Cross Section ....ooovvnne. (ng o)
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4.4 Weighting Factors

Statistical weighting factors are a crucial element of a successful Monte Carlo simulation,
allowing trace species to be described with reasonable accuracy. The weighting factor is the
number of "real” molecules that correspond to each "simulated" molecule. A "simulated" molecule
corresponds to one molecule’s worth of storage (one state vector) allocated in the program, and the
weighting factor is its statistical weight. So, for example, the total number density in a cell. n
can be expressed

P

NW;
B = Y @)

i={

where N; indicates the number of simulated molecules of species i in the cell, W; is the weighting
factor for that species in that cell, V is the cell volume, and p is the number of species. The
product N;W,; that appears in Equation (27) is termed the number of "real" molecules of species i in
the cell. Note that ny as calculated by Equation (27) is a scaled value; it would have to be
multiplied by n.,, as shown in Table 1, to become a dimensional evaluation of the number density.

The weighting factors used in SOCRATES are dependent on cell and species. Hence, flow
fields where a given species is much more dominant in one portion of the solution region than
another can be accurately represented.

A critical error that can occur in Monte Carlo codes is to have the number of simulated
molecules exceed the dimensioned limit of the code. On the other hand, it is generally desirable to
_have as many molecules as is feasible to obtain good statistics. Resolution of these contlicting
considerations is complicated by lack of a priori knowledge of what the species number densities
will be as a function of space and time. The way the resolution is achieved is by a dynamic
adjustment of the weighting factors, as required. This keeps the number of simulated molecules
more or less constant while allowing the number of real molecules w0 adjust as the solution evolves.
The introduction of weighting factors, with the ability to adjust them as the solution demands, is an
Important feature of a Monte Carlo simulation which is to be usable by non-experts.
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5. INITIAL AND BOUNDARY CONDITIONS

5.1 Initial Conditions

Since the direct simulation Monte Carlo method is inherently an unsteady technique, an
initial state must be specified in order to advance the solution. For situations where a steady state
result is desired, it is obtained as the long-time solution to an unsteady problem. In this case the
initial conditions have no effect on the eventual solution, but they may weil have an impact on the
speed with which that state is achieved. For steady state solutions, SOCRATES simply starts with
an evacuated solution region. For unsteady solutions, however, it is necessary to start with a
molecular distribution which is representative of the conditions at the start of the desired
simulation. For SOCRATES these conditions correspond to a uniform flow with the translational
and internal modes being in equilibrium. The specification of the initial conditions for unsteady
runs, therefore, involves determining the state vector elements consistent with this condition for the
desired number of molecules.

5.1.1 Number of Simulated Molecules and Their Weighting Factors

The desired number of simulated molecules for each species in each cell, M, is an input
quantity, (Typically, simulations aim for a total number of molecules per cell in the neighborhood
of 20.) Given the initial number density to be simulated for a species, n;, (which will have been
automatically converted to internal dimensions - see Section 4) the weighting factor for species i in
a given cell is simply '

Vni
W, M (28)

(4

where V is the cell volume. If a species Is not initially present in a cell, then it is assigned an
initial weighting factor of zerv. If simulated molecules come imo the cell, the weighting fuctor
from their place of origin will be used to initialize the welghting Gactor in the cell. As the solution
proceeds, the weighting factors are automatically adjusted to keep the average number of simulated
molecules of each species in each cell approximutely equal to M. The one exception to this rule is
“that the code will always try to keep a sufficient number of major species in a cell to guarantee a
proper collision environment, and this sometimes requires more than M, major species molecules.

5.1.2 Initlal Positions

The initial molecules assigned 10 a cell should have an equal probability of being pluced in
any volume clement of the cell. For the hexahedral cells of SOCRATES, this simply involves
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selecting each of the position elements at random from the range appropriate to the cell in question.
That is, the x position is selected via the equation

X = Xpin * BXpax - Xmin) > 29

where x;, and x,,,, are the positions of the x-faces of the cell in question, and § denotes a random
variable which has equal probability of lying anywhere in the interval {0,1}. (8 wil! appear often
in this report. Each appearance corresponds, of course, to a unique evaluation of the random
variable.) The other position elements are selected analogously.

5.1.3 Initial Velocity Components

The thermal velocity components for a molecule in transtationsl equilibrium (neglecting, tor
the moment, any mean tlow contribution) should be selected from a normalized Maxwellian
velocity distribution, fg(v), given by

fg = aexpl-(a))Vr , (30)
where _
a. = VmiQReTy) , (1)

m is the species molecular weight, Rq is the universal gas constant and T, is the temperiture.
Equation (31) applies for each of the moleculur velocity components and must be sampled three
times for each molecule that comprises the initial state of the simulation. A method tor directly
- sampling from this distribution Is

A‘ = 2!’5 . : (32)
A= L VIGE Y
v o= Agin(A) . | | (34)

After the thermal velocity components are determined for each molecule, then any mean flow
velocity is simply added on. The velocitivs ure then transtormed (o internal units.
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5.1.4 [nitial Internal Energies

The only remaining element of the state vector to be specified is the internal energy.
Internal energies for a gas in equilibrium are distributed according to the normalized distribution
function fj given by

12-1 .
= §2lexp(i) 35)
Zml‘({lZ)

where { represents the number of internal degrees of freedom for the species in question, T' is the
gamma function, and £ is a dimensionless internal energy, i.e.,
2E,

¢ R (36)

where Ej Is the internal energy. Equation (35) is a representation of the chi square distribution for
¢ degrees of freedom; procedures for sampling from this distribution are given in Reference 5.

3.2 Source Boundary Conditions .

The inteoduction of source molecules into the simulation is o boundary condition which
- depends on the specific model tor the source in-guestion. SOCRATES includes a “cors flow*
source, which describes the contamination thut results from the scattering of the flow from a
thruster back onto the shuttle, For this source, it is important to have a description of the main
exhaust flow away from a thruster. (This is to be contrasted with & source which duscribes the
direct contamination of surfuces viu impact of exhaust gases. Since the thiusters are not pointed
- directly at shuttle surfaces, it is the small portion of the flow which leaves the thruster at a large
angle from the exhaust centerling which is importunt in this case.)

The plume gases espand upon leaving the exit plane and adopt an essentially radial fow

pmﬁle over & distance which is un the order of exit plane dimensions. Since this distance is small

- compared to the fength scales of the interaction of the plume with the stmosphere, it is appropriate

to replace the nozzle by a point source of exhaust molecules traveling at their thermodynamic
limiting speed with an undisturbed number density distribution given by

B,. ' :
8 = 2 o . . 37

where B gives the axial number density decay and 0 represents the angle from the thrust axis. The
¢ appearing in Equation (37) is the spherical cadivs, giving the total distance from the source. The
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particular form for f(6) that is used in SOCRATES is an asymptotic form of that proposed by
Brook,® namely

f(6) = exp{-N[l - cos(®)]} , 38)
where

OIS (39)

1-Cy,

C = -]-[I+cos(6)]&[1+ l )| {40)

fr 2 oy yM2

u

= = ety @)

Uy (v- M2 .
and

LU : '
B = —nAN— | ~ o “2)

In the above relations, u,, M. n, and A, denote the exit velocity, Mach number, number
density and area, respectively; 6, is the nozzle divergence half angle, and u,, and y are the
thermodynamic limiting speed and the iatio of specific heats,

In a solution time step Aty, nu Ay, real molecules are introduced. Each molecule is
assigned an angle § which is chosen to be consistent with Equation (38) via

6 = cos'[l +Cjlog(l-CB)] , 43)
where
¢, = L (44)
TN
and
Cy = 1-exp(-22%) (45)
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An azimuthal angle is selecicd at random for the molecule, and then the resulting velocity is
represented in the basic Cartesian coordinates utilized by SOCRATES. The molecule is then
advanced from the source appropriate to a speed of u, and a time increment which is a random
fraction of At,,. The process is repeated until the proper aumber of simulated molecules of each
exhaust species have been introduced.

5.3 Atmospheric Boundary Condition
The atmospheric boundary condition for SOCRATES is that molecules should be introduced

into the solution region.from the outer boundaries in such a way as to simulate the undisturbed
ambient flow outside of the solution region.

5.3.1 Molecular Flux Across a Surface Element

The relations for molecular flux across an infinitesimal surface element are given in
Reference 1. If q is the molecular flux {molecules per unit area per unit time) crossing a g.ven
surface element, then q is given by

n

q = Sz {epewiive + wiireriwiij ' (46)
where

A = VRT, , 47)
» .

w = Au,cos(d) . (48)

In these relations, n,, and T, represent the ambient number density and temperature for the
species in question; m represents its molecular weight; ug represents the mean How velocity; and 6
is the angle between the inward surface normal and the mean flow direstion. The flux given by
Equation (46) Is positive for all values of 0, reflecting the distribution of molecular velocities.
However, it does become exponentially small for large negative w. (Note that these relations must
be applied on a species-by-species basis; each species has a different spread in its velocity
distribution by virtue of its different molecular weight.)

The application of Equution (46) to the flut surfaces comprising the SOCRATES outer
boundary Is direct, since 0 does not change along the face. The total numbur of molecules to
introduce for a time step of At Is simply qAt A, where A is the areu of the flat face in question,
Since the flux is constant over u flat face, cach position on the face is equally likely as a point for
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molecular entry. Hence, for a flat face, the starting molecular position can be simply obtained by
selecting a point at random on the face.

5.3.2 Incoming Molecular Velocity Components

For each molecule that is introduced, a local orthogonal coordinate system is set up such
that one direction is in the direction of the inward surface normal. Velocity components are first
determined in terms of this local coordinate system and then transformed to the main code
coordinate system. In the local coordinate system, the velocity components parallel to the surface
are determined as discussed above for molecules in the initial condition. The inward component of
velocity must be selected in proportion to the distribution h(v) given by

h(v) = vexp{-la(v- <v>)}} , (49)
where <v> is the component of the mean flow velocity in the inward normal direction and « is as
given in Equation (31), It is possible for <v> to be negative, but all incoming - molecules must

have a positive v value by definition. Hence, this distribution is only sampled for positive values
of v. The sampling is done via the acceptance-rejection technique.
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6. MOLECULAR TRANSLATIONS

As discussed in Section 1, an essential element of the direct simulation Monte Carlo method
is the periodic advancement of simulated molecules along their trajectories. Formally, this is
accomplished by updating the position and velocity elements of the state vector. The specific
progedures for doing this depend on the coordinate system in which the state vector elements are
represented.

6.1 Molecular Translations in Cartesian Coordinates

In Cartesian coordinates, the translation is very direct. Let X, y, and z represent the
position coordinates and u, v, and w the corresponding velocity coordinates. If initial and final
values of the state vector are represented by a 0 and 1 subscript respectively, then the updated state
vector elements corresponding to a translation through a time step At are given by

X| = xXg+ gt (50)

Yi = Yo+ Vot , 82y

2, = zg+ woll , (52)

U = ug , (53)

Vi = Vp (54)
and

W = W . (35)

6.2 Molecular Cloning

When a simulated molecule is translated from one cell to another, the weighting factor for
that species will generally be different in the new cell. Since it is the number of real molecules
rather than the number of simulated molecules which must be preserved when crossing cell
boundaries (statistically, at least), it is necessary to correct for the distinct weighting factors (see
Subsection 4.4).

If the weighting factor before translation is Wy, then the simulated molecule represents that

many real molecules, If the weighting factor in the new cell is W, then Wo/W, simulated
molecules would be required to represent the same number of real molecules in the new cell, If
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this ratio were a whole integer, then this could be accomplished by introducing that many "clones"
of the simulated molecules in the new cell. That is, Wo/W, simulated molecules would be placed
in the new cell, all with the same state vector.

When the number Wo/W, is not an integer (the usual case, of course), then the cloning must
be done on a statistical basis. So, for instance, if Wo/W, were equal to 2.7, then 30% of the time
two clones would be produced, and 70% of the time three clones would be produced. Note that
the ratio may be less than unity, and the molecule may not be introduced into the new cell at all.
(In which case the molecule is removed from the simulation.)

Cloning is a necessary evil inherent in a system with spatially varying weighting factors. It
enables such a system to maintain the statistically correct flux of mass and momentum across cell
boundaries, but it misrepresents the flux of randomized or thermal energy. This can be seen by an
extreme case where a very large number of clones is produced when a simulated molecule crosses a
cell boundary. The resulting molecules in the new cell have the correct mass and momentum flux,
but since they all have precisely the same velocity they have a null relative velocity and, therefore,
a zero temperature. [f the weighting factors are not too different between adjacent cells, then the
errors introduced by this process are acceptably small. However, it does mean that one cannot
arbitrarily improve statistics in one portion of the solution region by selectively reducing the
weighting factors there. This was a difficulty which was encountered in the early stages of the
direct simulation Monte Carlo method while trying to improve statistics along the axis of
axisymmetric simulations, since the cell volumes (and, therefore, the sample sizes) tend to be
smallest on the axis.

As is also the case for simulated molecules produced via chemical reactions, it is possible
for the weighting factors between successive cells to be so different that a prohibitively large
number of simulated molecules would be required to produce the same number of real molecules.
The codes sense when a disproportionate number of simulated molecules are being produced for a
given species and cell and adjust the weighting factor automatically, As the weighting factor is
increased, a proportionate fraction of molecules of that species and cell are removed from the
simulation in order to keep the number of real molecules properly represented. This process
enables the weighting factors to seek their own proper level without a priori knowledge of the
solution. (Periodically, the cells are examined to determine if a certain species has been
underrepresented in terms of its number of simulated molecules. If this is found to be the case,
then the weighting factor is decreased, allowing weighting factors to float downwards as well as
upwards, It is the danger of weighting factors being too small, causing an overflow of code
dimensions, which is most critical, however.)
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7. COLLISION SAMPLING IN A MULTI-COMPONENT VHS GAS

7.1 General Considerations and Approach

The two general considerations in the sampling of collisions are, as usual, accuracy and
efficiency of the simulation. As far as accuracy is concerned, it is crucial that the method in which
molecules are selected for collisions be proper. The correct collision frequency must be simulated
between various species and, in fact, between the different portions of the velocity phase space for
the various species. Furthermore, this frequency of simulated collisions must remain correct
without any requirements put on the velocity distribution function; it certainly must not be assumed
that there is a Maxwellian velocity distribution.

As far as efficiency is concerned, it is highly desirable to use a method of collision sampling
involving a computational effort which is proportional to the number of simulated molecules, N, in
a cell. Methods which are proportional to a power of N greater than unity can become
prohibitively time consuming as the number of molecules is increased - a limit which should be
made as accessible as possible for obvious physical reasons.

7.2 Coilision Sampling for a Single Component Gas

The simplified situation of a simulation involving only one species is considered here. This
problem is significant in part due to all the attention it has received and, as will be seen, it serves
as an important reference case. When there is just one species, then there is just one gas kinetic
cross section (though it is still, of course, a function of collision energy), just one molecular weight
and just one weighting factor for each cell. In short, just one of everything that has a molecular
subscript. Hence, in this subsection all such quantities will be presented without subscripts. The
most important simplitication of having a single species is that there is just one collision class, i.e.,
only self-collisions of the given species with itself are possible.

7.2.1 Collision Pair Selection

" As discussed In Section 1, collisions are sampled on a cell-by-cell basis until the number of
collisions simulated is appropriste to the overall solution time step, At,. The only spatial
requirement placed on potential collision partners is that they be within the same cell. In
particular, it is not required that they be within a molecular diameter of each other. (Note that if
all pairs of molecules were inspected to find those that were sufticiently close o each other, this
would involve a computational effort in proportion to the square of the number of molecules in the
cell.) The rationale for this is that the cells should be small enough so that macroscopic properties
can be assumed constant across the cell. When this is the case, then a molecule within the cell can
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be considered typical of a molecule which might exist anywhere within the cell, and molecular
location can be ignored when selecting potential collision pairs.

Spatial consideration aside, the probability of any two molecules experiencing a collision is
proportional to oc,, the product of their mutual cross section times their relative velocity. This
probability is correctly simulated via an application of the acceptance-rejection technique. A
maximum value for oc,, (0¢,) .y, is Stored for each cell. (This value is updated whenever a greater
value is encountered.) Pairs of molecules are selected at random from the cell, and ac, for that pair
is calculated. The ratio r, defined by

ac,
(Ucr)max

r =

(56)

is determined. A random variable, B8, is then generated, and the pair of molecules is accepted as
collision partners if r is greater than 8. This produces the proper relative collision probability
without regard to the existing velocity distribution function.

7.2.2 Collision Time Counter for a Single Component Gas

The volumetric collision frequency for a single component gas, v, (collisions per unit
volume per unit time), is given by

y = —;-n2<ac,> N (57)

where, as in Section 3, n represents the number density of the species, and <eoc,> is the average
product of collision cross section and relative velocity. At first inspection, it would seem from
Equation (57) that a correct simulation of collision frequency would require evaluation of <a¢.>,
which would mean that all pairs of molecules in a cell would have to be considered. Such a
procedure involves a computational effort proportional to N* and is to be avoided, if possible, in
preference to a method which is proportional simply to N. The alternative approach, introduced by
Bird,! Is the time counter approach. For each collision a time counter, t,, is incremented by an
amount which depends on the relative velocity of the collision. Collision sampling continues in a
cell until its time counter has been advanced beyond the overall flow simulation time, at which time
the code proceeds to the next cell (which has its own time counter), The time counter increment,
At,, is given by

2
Vnloe,

Ay, = (58)
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where V is the cell volume and n is the species number density given by
n = W (59

with W being the weighting factor for the species. It should be stressed that Equation (58) applies
for each real collision. As is discussed in Subsections 4.4 and 8.4, each simulated collision
corresponds to W real collisions, so when a simulated collision occurs the actual applied increment
to t, is W times the value given by Equation (58). A demonstration of the validity of Equation (58)
is given in Reference 7.

7.3 Collision Class Sampling in Gas Mixtures

The above procedure for a single species gas can be extended to a multi-component mixture
via consideration of distinct collision classes. In this approach, collision classes are defined by the
colliding pair identities. Hence, if there are p species in the simulation then there are p(p+1)/2
collision classes, which can be identified by the subscripts of the corresponding molecular pair.
(The number of classes is not p® since the order of molecule specification is not taken to matter in
deiermining a collision class. ilencs, the class idontificd by the subseripts i,] is not distinet from

the class identified by the subscripts j,i.)

In collision class sampling each collision class is sampled separately, and the collision
sampling in a cell is not complete until all classes have been considered. Euach collision class has
its own stored value of (0¢,),, and its own separate time counter, t ;. It can be shown that the
appropriate time counter increment in this case is

[+ 6,
Aty

where & is the Kronecker deita which is unity for i=j and zero otherwise. As in the previous
section, the above increment applies for each real collision. A simulated collision usually

corresponds to Wy, real collisions, where W is the lesser of W, and W; (see Subsection 8.4), so
when a simuluted collision occurs, the applied increment to ty; is Wy times the result of

Equation (60).
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7.4 Global Collision Sampling in a Gas Mixture

Although the procedure described above is quite reasonable for, say, a two-component
mixture, it becomes exceedingly complicated as the number of species increases. For 10 species,
for instance, the program must loop over S5 distinct collision classes for each cell, and storage
must be allocated for 110 quantities in each cell. As the number of species increases, the storage
requirement for the collision sampling constants quickly becomes greater than the storage required
for the molecular state vectors! The obvious simplification is to search for a technique where
collisions are simulated simultaneously for all collision classes, with each class having its proper
relative probability of being selected. The overall collision sampling then continues until a single
time counter indicates that sufficient collisions have been sampled in the current time step and cell.

7.4.1 Global Collision Time Counter

If molecular pairs are selected for collisions such that the various collision classes
automatically appear with the proper relative frequency (see below), then it is not necessary to
consider separate time counters for all the various collision classes. One approach that could then
be applied is to keep a collision time counter for just one collision class and increment it when
collisions of that class occur. If the various collision classes are being selected according to their
correct relative frequency, then simulating the proper frequency for one collision class will ensure,
in e iong run, that aii coliision ciasses are uccurting wiil e conrect ftequency. A disadvantage
with this approach is the necessity of making an arbitrary choice for the collision class which is to
have a time counter, Furthermore, there may be no good choice for a reacting flow where the
dominant species can vary strongly from place to place. (Clearly, one would not want to select a
class of collision that does not occur in a given cell, since the result would be a never-ending
sampling of collisions of other classes.)

The preferred approach is to define a global collision time counter, t,, which is a weighted
average of the time counters of all collision classes; i.e.,

i

tx =
i=]  jai
where
i
C = Du N (62)
inl jm=

and the Dy are non-negative coefficients which can be selected at will. Note that in this
formulation every collision class will result In some increment ot the global time counter (unless
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D;; is zero for that class), so the collision sampling frequency is not dependent on any one collision
class.

It remains, of course, to specify the D. A very convenient choice is given by

D = — | (63)

Firstly, Equation (63) is convenient because it tends to make the collision classes with the higher
collision frequencies count more, resulting in good statistics for t, irrespective of cell location.
(Note that Dij is cell dependent since the species number densities are cell dependent.) Secondly,
Equation (63) results in a particularly convenient form for t,. The normalization factor given in
Equation (62) can be summed analytically to give

i
_ 2 0y

s = '?i: E A (64)
=y gy U

Hence, a collision of class {j, which would produce an increment of At to its own time counter

produces an increment At to ¢, given by

2n:n
- '_I‘L—A‘oij , (65)

At
o1+

where, again, n is the total number density of all species in the cell. If Equation (60) is substituted
into Equation (65), the result is

2
Vnloyc,

At, = (66)

8

Equation (66) is extremely significant since it recaptures the precise form of the time counter
increment for a single species (Equation (58)), but indicates that it is completely valid for a
multi-component mixture so long as the various collision classes are sampled with the proper
relative frequency.

7.4.2 Collision Pair Selection in Multi-Component Mixtures

When considering selection of collision pairs, it is crucial to remember the distinction
between real and simulated molecules discussed in Subsection 4.4. Given two simulated molecules
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selected at random from within the cell, the probability of their having a real collision is
proportional to W;Wjo;c,. However, real collisions cannot happen individually; they come W at
a time, where W is the lesser of W; and W;. Hence, when a collision is decided upon in the
program, W of them will occur. To compensate for this, potential collision pairs should be
accepted for a collision according to the size of Q given by

Q = Wyoic, 67)

where Wy is the greater of W; and W;. The relative frequency of real ij collisions will then be
proportional to the product QW (the relative probability of a pair being accepted for a collision
times the number of real collisions occurring when the pair is accepted), which is the desired
relation. Selection of collision pairs with the correct relative frequency then assures that
incrementing the global time counter as discussed above will give a statistically correct sampling of
all collision classes simultaneously.

7.4.3 Summary of Collision Sampling in Multi-Component Mixtures

The results of this subsection can be summarized via the following procedure for the
sampling of collisions;

e EZach cell has a {current) value of Quan the largest value of Q which has heen

encountered so far in the collision sampling process. Whenever a larger value
of Q is encountered, Q,,,, is set equal to that larger value,

®  Each cell has a current value of the global «ime counter, t,.

®  Pairs of simulated molecules are selected at random from all molecules within
the cell,

®  For each palr, Q, (as defined by Equation (67)) Is computed.

®  The ratio of Q 10 Qpuay Is computed, and a random variable is generated. The
pair is accepted for collision if the random varitable Is less than that ratlo. (1f
the pair is not accepted, then another random pair is selected. The process
continues until a palr is accepted.)

®  For an accepted pailr, the colliston mechunics are computed as described in
Section 8.

® The global time counter is incremented by W Ar, where At, Is given in
Equacion (66), and Wy, Is the lesser of the two welghn"r‘:g Jactors.

®  The process continues until the global time counter goes beyond the overall flow
time. At that point the collision sampling is commenced in the next cell,

®  When all cells have had collislons simulated, then the code proceeds to the
translation portion, (See Sections 1 and 6.)
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7.5 Deviations from the General Procedure

There are some exceptions to the above relations which have been added to SOCRATES in
order make it more efficient. These exceptions are described in the following subsections.

7.5.1 Cell Specific At,,

Before collisions are simulated in a cell, the mean residence time of molecules in the cell is
estimated using the cell dimensions and the molecular velocities. When collisions are simulated in
the cell, it is done for an increment of the global time counter that is 20% of this mean residence
time (but no less than At,). Collisions are not again simulated in the cell until the overall flow
time has caught up to the global time counter for the cell.

The major reason for doing this is to recognize that some cells will tend to have their
molecules remain in them much longer than others. Cells which have longer molecular residence
times will tend to have molecules which experience more collisions within the cell. When the
number of collisions per molecule becomes sufticiently large, it can be assumed that the molecules
in the cell equilibrate with each other, and the equilibrium sempling procedures described in
Section 9 can be applied. Since these relations are much faster than direct collision sampling, it is
highly desirable to apply them whenever they are valid.

For unsteady simulations the cell specific At is not applied since it might result in a
temporal blurring of the solution.

7.5.2 Relaxation of Q...

The cureent value of Q,,,, in a cell is reduced by a tactor of 0.95 it 20 or more potential
collision pairs are rejected in a row. The rejection of cotlision pairs can become the most time
consuming part of the simulation, and a large valug of Q,,,,, exacerbates the problem. This change
means that a cell is not permanently penalized for u single event that once oceurred in it, but the
change in Q. is not so great us t invalidute the pair selection probubility. This modification
can, under some collision dominated circumstances, result in an order of magnitude increase in
computational speed.

7.5.3 Maximum Time Counter Increment

Since 4t, is inversely proportional to relutive velucity (Equation (66)). when a very low
velocity collision does oceur, it can result in very lurge increment to the collision time counter,
which effectively turns off collisions in the cell for a long time. Although this is statistically
proper in the long run, it can result in a substantinl statistical fluctuation in the short run, The
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codes do not allow a collision time increment to be greater that At,,, the overall step that is used in
the solution.

The limitation on At, is achieved by decreasing the weighting factor of the collision below
the weighting factor of either of the two colliding molecules. The maximum collision weighting
factor, (W) may is given by

1
(wc)mu = -i-Athnzaijc, . (68)

The weighting factor that is applied to a collision is actually, therefore, the smaller of {W;, W
(Wodmaxt- If W, represents this value, then a collision counts a5 W, events. In order to maintain
an overall correct simulation, the Q described in Equation (67) is actually given by the relation

WyW, a;¢
Q = —Lt (69)
[\
and the time increment applied to the global time counter is W At,. (The two molecules then have

their state vectors updated as a result of the collision with probabahu» of W/W; and W/W;

rocnaNivalu ) Maogt of tha tima W iy nmml 10 W, L and thic :\nwmhwn raducac 10 oh‘n u!ug ulu\mv

howcvef, the problem of ou.asiumu large time increments is eliminated,

7.5.4 Separation of Major and Minor Species

A problem arises when a cell happens to contain a single molecule of one major species and
- all other molecules in the cell are minor species with weighting factors considerably less than that
_ of the first molecule. (In treating minor species, the ratio of weighting factors may be as much as
1000 or more.) Since a molecule cannot collide with ltselt, collisions between major species can
not occur in such 4 cell. The result is that the contribution of mujor species collisions to the
overall time counter aré unubtainable; and the entire collision time increment has to be made up
with collisions between the single mujor species und one ur other of the minor species. (Collisfons
between minor species were rure since pairs are selected with a probability which is proportional o
- the greater weighting factor - see above.) The result of this problem s that vastly to many
collisions are simulated between the major and minor species. This is both unphysical and
numerically inefficient,

The solution to the problem is twofold: 1) Logic is in the collision routines to recognize
when this problem occurs; and 2) The globul time counter is redefined in such situations. The
different time counter is achieved simply choosing a diffecent definition for the Dy coefficients
appearing in Equation (61). Rather than tuking 4 weighted averape over all collision classes, it is
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possible to take a weighted average over just those collision classes which involve a collision
between a major and a minor species. If n; represents the total major species number density and
n; represents the total minor species number density, then Dj; is defined for this case to be

D'J = ninj , (70)

rather than the value given in Equation (63). The implied increment for the global time counter is
given by

_ 1
At‘ - Vn,n,ah-c,

()

This counter is then only applied for collisions between the species declared to be major and the
species declared to be minor, but the increment that is applied is much larger than if the weighting
were over all collision classes. Note that collisions between minor species still occur - they just
don't affect the collision time counter. It should be stressed that this modification is only applied
for the special case of a cell that has a single major species molecule (defined as a weighting factor
at least ten times greater than that of the other molecules). The result of this modification is the
return of the correct collision frequency to the simulation and the removal of a substantial
numerical problem.




8. COLLISION MECHANICS

8.1 Relations for Elastic Collisions

The purpose of this section is to present relations appropriate to the simulation of a collision
in the SOCRATES code. (The question of how molecules are selected for collisions, which is
crucial to the proper simulation of collision frequency, was taken up in the previous section.)
Conservation of momsntum implies that the center-of-mass velocity of the collision pair is
.unchanged by the collision; and conservation of energy then implies that the magnitude of the
relative velocity between the collision partners is also unchanged by the collision.® Since the
collision is treated as 'a statistical event, all that remains is to select the direction of the
post-collision relative velocity vector from the correct distribution. As mentioned in Section 3,
collisions in the VHS model are treated as hard sphere collisions when they occur (though they do
not occur with the same velocity dependence as do hard sphere collisions). Hence, as far as the
collision mechanics is concerned, the model is a hard sphere model. For hard sphere molecules, all
directions for the post-collision relative velocity vector are equally likely. This is the chief
computational simplicity of the VHS model.

Let the two molecules be identified by subscripts 1 and 2, with m and v denoting their

masses and velocities. If i and f indicate initial and final states, then the relations for the collision
can be summarized via;

_ MV i + MV

}

Yem % Tm¥m, (72)
ve o= [vii-val | | (73)
cos(y = 1-28 , (74)
sin@) = V1-cos6) | (75)
¢ = 278 , (76)
Ta = vleos(0), sin(Oos(@), sin@sin@)] | )
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vig = ch+ m, +mz ’ (78)

and

- my s

Vot = Vem® m, +my (79)

Where, again, § indicates a random variable which is evenly distributed on the interval zero
to one. Each time that 8 appears a distinct evaluation of the random variable is implied.

8.2 Effect of Coordinate System

Note that the expression for the post-collision relative velocity vector (Equation (77)) is not
coordinate system specific. The Indicated vector components can apply to any locally orthogonal
coordinate system, since the direction implied is random. The convenient coordinate system to use,
of course, is the coordinate system used to define the velocity elements of the state vector.

Although Equation (77) is independent of coordinate system, there is a source of error
which is dependent on coordinate system. This error arises from a basic premise of the direct
simulation Monte Carlo method, namely that position in the cell Is ignored when selecting collision
partners. If the velocities are expressed in a coordinate system which hus spatially varying basis
vectors, then differences in position between the two molecules can imply an erroneous difference
in velocity,

SOCRATES makes use of the effect of spatially varying basls vectors to solve an otherwise
difficult problem. The problem arises due to the presence of concentrated sources of contaminants,
such as thrusters and evaporator vents, which are modeled as point sources producing molecules
traveling (initially) directly away from the source. Since there is no length scale to a point source,
. the assumption that properties are constant for the cells in the immediate vicinity of the source must
- beinvalid. This can result in improper colliston sampling if special care is not taken.

~If the velocities are expressed in Cartesian coordinates, for instance, then two molecules
selected from different positions within the cell containing such a point source can have a
substantial relative velocity. This relative velocity is illusory, however, since it merely results
from the assumption of a point source and the neglect of spatial differences; there should not be
coilisions based on this relative velocity since the molecules are, in fact, heuding away from each
other. ‘ : ,

_ A simple resolution to this problem is to express the source velucity elements in spherical
polar coordinates. In thess coordinates, every moleculs leaves the point suurce with the sume
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velocity in the direction of the spherical radius vector. Expressed in spherical polar coordinates,
the relative velocity disappears. SOCRATES transforms velocity vectors to spherical polar
coordinates for cells in the vicinity of point sources (specifically, when the total number density is
greater than three times the ambient number density). Collisions are sampled in the transformed
coordinates, and then the velocity elements are transformed back to the normal representation after
collisions have been sampled for the cell in questicn.

8.3 Simulation of Inelastic Collisions

SOCRATES uses the Borgnakke and Larsen* phenomenological model for transfer of energy
between internal and translational modes. In this model, a collision is assumed to be either
perfectly elastic or perfectly inelastic, via a user specified probability. A perfectly inelastic
collision is achieved by summing the total pre-collision energy (internal energy of both molecules
plus the translational energy of their relative motion, Equation (5)), and then assigning
post-collision values from the equilibrium distribution for collisions with that total amount of
energy, taking into account the number of internal degrees of freedom in the two molecules. Note
that this model has the ability to relax from a nonequilibrium to an equilibrium state via an
effective collision number. The ability to exchange internal energy in such a manner comprises a
significant increase in capability for Monte Carlo codes beyond the previous models where
molecules had no internal energy. It is this capability which enables the codes to realistically
predict the macroscopic effects af polyatomic gas flow,

Let §, and {> be the number of internal degrees of freedom of the two molecules in an
inelastic collision, and E, be the total coilision energy defined by

E, = E;+E; +Ey , (80)

where E; is the initial translational collision energy defined by Equation (5), and E,; and E,; are
the pre-collision internal energies of the two molecules, Using the procedures presented in
. Reference S, the somewhat cumbersome expressions given in Reference 4 can be recast in terms of
~ the chi-square distribution. Post-collision values for the respective energies are given by

xlEs
B = A% AR o

X,E,

Bt XTI TR e

.35-




X3E|

Bt = 73X+ X,

, (83)

where X is selected from a chi-square distribution with {| degrees of freedom, X, is selected from
a chi-square distribution with { degrees of freedom, and X; is selected from a chi-square
distribution with 2(2 - w) degrees of freedom. (Efficient procedures for sampling from a chi-square
distribution are also given in Reference 5.) The post-collision translational energy is then used to
determine a new relative velocity between the two molecules. With this new relative velocity, the
previous relations for determining the post-collision velocity elements of the molecules apply for
inelastic collisions as well as for elastic collisions.

The fact that the translational energy is selected from a distribution with 2(2 - w) rather than
the 3 degrees of freedom that might be expected for translational energy merits some explanation.
It is due to the fact that these molecules are not random samples from the gas, but rather special
molecules owing to their being the product of a collision. This point can perhaps best be seen by
considering microscopic reversibility, where the inverse collision occurs with the same rate in
equilibrium, For this reverse process, molecules participating in it are not all equally probable,
since those with greater relative velocities are more likely to collide. Hence, the number of
degrees of freedom does take on the value three for the special case of w equal to 1/2, which is
- precisely the case of collision frequency being independent of relative velocity. Translational
energy in collisions behaves as if it has 2(2 - w) degrees of freedom,

8.4 Collisions Between Molecules with Distinct Weighting Factors

There is an obvious problem when considering a collision between two simulated molecules
with distinct weighting factors, since they represent a different number of real molecules. If Wy,
and W, represent the weighting factors for the two molecules, with Wy, being greater than W,
- then the collision is generally counted as W, "events", (More precisely, the weighting factor
applied to the collision is generally taken to be W.) This is accomplished hy always assigning
post-collision velocity and energy components to the state vector of the molecule with the smaller
weighting factor, but only changing the components of the molecule with the greater welghting
factor some of the time. The probability that the molecule with the grester weighting factor will
have its components changed is simply W /W,. Statistically, this means that for a large number of
simulated collisions, each such simulated collision will average out to Wy real collisions for each
species, even though their weighting factors differ. It should be noted that this does violate
conservation of momentum and energy on an individual collision basis, but these quantities are
conserved in the aggregate over 4 large number of collisions.

In some cases the collision Is assigned a weighting factor W, which is less than either of W_

 or Wy. When this is done, the velocity components and internal energies of the two molecules are
changed with a probability of W /Wy and W /W, respectively. (See Section 7.)
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8.5 Reactive Collisions

Reactive collisions can be simulated directly. The treatment of reactive collisions is similar

_ to that for inelastic collisions, except that a heat of reaction is added to the total energy expressed

¢ in Equation (80). Reactive collisions can result in the disappearance of reactant molecules, with the
’ post-collision state being applied to the product molecules.

8.5.1 Types of Reactive Collisions

SOCRATES has a fairly comprehensive chemistry package which is capable of handling a
variety of reactive collisions. Generally speaking, a reactive collision is an event which occurs due
to collisions with a probability that depends on the velocity (or energy) of the collisions. The
following generic types of reactions are treatable:

1. Specific Bimolecular Reactions, i.e., reactions of the form
A+B-C+D ,

where A, B, C, and D are particular species. An example of a reaction of
this type is

O + H,0 =0 + Hy0'

(In this example, the vibrationally excited state of water, H,0", is treated as
a distinct specles.)

2.  Generic Bimolecular Reactions, i.e., reactions of the form
A+M-B+M ,

where A and B are particular species, and M can be any species. An
example of a reaction of this type is

H0 + M= H,0' + M

which is similar to the previous reaction except that now any molecule can
serve to excite the water molecule.

. - 3. Dissociation Reactions, i.e., reactions of the form
A+M-C+D+M ,

where M is any molecule, and C and D are the fragments of A that result
from dissociation. An example of a reaction of this type is

O, +M=0+0+M
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8.5.2 Reactive Collision Probability

The Monte Carlo program simulates all of the above reaction types by calculating a reactive
cross section which is a function of the relative collision energy. When a collision occurs, the
reaction is simulated with a probability which is proportional to the ratio of the reactive to collision
cross section at the relative velocity for the collision.

There are two options for specifying the reactive cross section. The first is to specify an
Arrhenius rate constant, k,, of the form

k. = ATxp(-E/RgT) , 84)

where E, is the activation energy of the reaction and A and n are parameters of the relation. (Rq is
the gas constant and T is temperature.) The unique reactive cross section, o*, corresponding to
Equation (84) is given by®

vVl + 5)A
= ._f_(._.'t_q.‘.!)_\/l -EJE, (E,-E)" , (85)

4
2R + 3/2)

where §;; is unity for like reactants and zero for unlike reactants, T' represents the gamma function
and E, is the collision energy given by Equation (5). Note that a rate constant is defined in terms
of an equilibrium velocity distribution, so the correspondence between Equations (84) and (85) can
be made. There is no requirement, of course, that the reactive cross section given by Equation (85)
be used only in equilibrium situations. When this option is used, only the arrhenius parameters
A,n and E, need be specified; the program automatically computes the corresponding reactive cross
section,

For some reactions, the form of Equation (85) is too restrictive, and it is then possible to
input a table giving the reaction cross section. The form of the table is of the same functional form
as Equation (85), namely the product of the relative velocity times the reactive cross section is
given as a function of relative collision energy. Although this form is not standard, it is far more
convenient for reactions where one of the reactants is generic ("M"), since there is no
correspondence between collision velocity and collision energy until the masses of both reactants
are specified.

8.5.3 Options for Simulating Reactive Collisions

SOCRATES has distinct options for simulating reactive collisions which are reflective of
different anticipated user needs. In all options, the sampling of the reaction rate (if it Is being
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performed) is done the same way. Whenever a collision occurs between the two reactants, the
reactive cross section is calculated, and the reaction is counted with a weighting factor, W, given
by

ve* :
= W, — , . (86)

r c
v

where W, is the collision weighting factor (see the previous section). Hence, aven thcugh the
reactive cross section may be significantly smaller than the collision cross section, the statistics on
the reaction rate are similar. (The statistics for the reaction rate may converge slower due to the
velocity dependence of the reaction cross section; but not due to its absolute inagnitude.) If two
molecules can participate in multiple reactions, statistics are kept for each reaction.

If products are introduced as a result of the reaction, they can be introduced at every
simulated reactive collision with a weighting factor of W_, or introduced with a weighting factor of
W,, but only W /W, of the time. The difference depends on the importance of tracing product
species in the simulation. The former approach will result in more computational effort being
spent on the product species, but it will give better statistics on them, In either case, reactants are
removed from the simulation with a probability of W /W, in any reactive collision.

v
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9. PROCEDURES FOR COLLISION DOMINATED FLOW

One of the major difficulties in the classical Monte Carlo technique is the attainment of
equilibrium, where the collision frequency can become prohibitively large for a direct simulation.
There are two basic approaches for this problem, and both are utilized in SOCRATES. The
equilibrium modeling is only applied if no products are being introduced into the simulation as a
result of chemical reactions. When such products are introduced, collisions are always sampled for
the full time increment. The two equilibrium approaches are described below.

9.1 Collision Cutoff Approach

This is the usual method of dealing with a collision dominated flow field. In this method,
collisions are sampled in a given cell only until enough have been sampled to guarantee
equilibrium. Since further collisions only result in the maintaining of equilibrium, they need not
be simulated. It is necessary, of course, to estimate the actual collision frequency and keep proper
count of the collisions (in particular the excitations) which are not directly simulated in order to
obtain the correct collision frequency, Once a cell has had its collisions cut off in this fashion, a
flag is set for it. On subsequent calls, the equilibrium aftermath approach (described in the next
section) is applied to the cell. (The equilibrium aftermath approach also calculates collision
frequencies and switches back to regular collision sampling if it becomes too low.)

9.2 Equilibrium Aftermath Approach

It is possible to avoid sampling collisions altogether if it is known that the cell is in
equilibrium. This is done by calculating the total cell energy and momentum, and then selecting
post-collision velocities from the appropriate equilibrium distribution. Although the principle is
simple, the application is complicated by the fact that molecules in the cell do not all have the same
statistical weight. In some ways (e.g., the determination of mean velocity) the statistical weight
acts like an effective multiplication of molecular mass - the greater a molecule's statistical weight,
the greater its contribution to the mean flow velocity, In other ways (e.g8., the assignment of
post-collision thermal velocities) the statistical weight does not affect the resuit - a light molecule
should generally have a large thermal velocity irrespective of its statistical welght.

, The second difficulty with the formulation of this approach Is the necessity for constraining

the total energy and momentum to match the pre-collision values. Hence, it is not proper to
calculate the initlal energy and then simply sample from Maxwellian distributions with the same
-mean energy, since such a distribution has 4 finite probability of producing 4 molecule with any
energy - and the net result would be an unacceptable divergence in the cell energy and momentum
from the initlal values. Both of these problems are avoided in the steps enumerated below.
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The method is implemented by calculating the total momentum and energy in the cell and
then "peeling off" one molecule at a time from the others. The internal mode energy and energy of
relative motion for that molecule (velative motion with respect to the remaining molecules) are
selected from equilibrium distributions, except that a scale factor which is proportional to
temperature is temporarily left undetermined. The process is repeated sequentially until all energy
modes have been assigned values, and then the overall multiplicative constant is chosen to match
the known total energy of the system (thus determining the temperature).

Each molecule is then assigned velocity components which are consistent with the known
relative velocity between it and the remaining molecules; and then conservation of momentum
determines the mean velocity of the remaining molecules. Again, the process is repeated
sequentially until all velocities and internal energies have been assigned.

9.2.1 Conserved Quantities

The total energy and center-of-mass velocity are directly computed via the following
procedure:

1) The following sums are evaluated, summing over all the simulated molecules in the

cell:

§; = Zwimi ' 87)
S = Y Wi, (88)
5 = Ewimivi , (89)
S = Ewimgwi , 90)
S5 = Ew‘mi(u? +v+wd) , o1)
and

Se = EWaEu - | (¥2)
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where W;, m; and Ej; are the statistical weighting factor, the mass and the internal
energy, respectively, of the ith molecule; and u;, v,, and w; are its velocity
components.

2) The center of mass velocity components: u*, v*, and w', are computed via;

v = S0, (93)

v o= 8,08, (94)

and

w'o= S8 . 95)
3) The total translational energy of relative motion betweer the molecules, E,.,,, can be

represented by:

B = 7 ) Wi - wF + (- VP + (- WP (96)

although it is more easily evaluated by the mathematically equivalent expression

2+ 832 + 5,2
B = %185-82 S" . 97

4) ‘Thetotal cell energy is therefore given by

Bo = S+ Em - (98)

9.2.2 Center-of-Mass Velocity Distribution

Given that a group of N molecules Is in equilibrium, it is possible to determine the form of
the distribution function for their mass averaged velocity, taking into account their different
statistical weighting factors. This relation is most easily demonstrated by relating the Maxwellian
velocity distribution to the normal distribution of statistics and then wiilizing a basic statistical
theorem.

A variable, r, is distributed according to u normal distribution it its probability density
functlon, f(r), is given by
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fr) = exp(-%)/(am) ) (99)
42

where o2 is the variance of the distribution. (The distribution has been selected with zero mean
since the effect of non-zero means does not influence the velocity differences which are the goal of
this exercise.) A basic result of statistics is that if r| is selected from a normal distribution with
variance o7 and r, is selected from a normal distribution with variance o3, then the variable r,
defined by

13 = ary +fr, (100)
will follow a normal distribution with variance o3 where
3 = &d +6F . (1o1)

If it is recognized that a normal distribution is the same as the Maxwellian distribution for a single
velocity component, then this result implies the distribution for the center-of-mass velocity
components obtained by averaging over N molecules as in Equations (93) - (95). The result is that
this mean velocity follows a Maxwellian velocity distribution appropriate to a “super” molecule
whose mass, my, is given by

N
m, = (gwimi)’/(gw%m;) . (102)

(The temperature of the distribution, of course, is the same as that used to selest the constituent
molecular velocities,) Although Equation (102) is not intuitively obvious (to these authors,
anyway), it does yield some expected limits. If all of the weighting factors are the same, then m, is
the sum of the masses of the individual molecules. However, if one molecule’s weighting factor is
much larger than the others (resulting in the center-of-mass velocity of the group being essentially
~ equal to that molecule’s velocity), then the distribution of center-of-mass velocity is the same as the
distribution for that one molecule.

9.2.3 Molecular Relative Velocity Distribution

The relative velocity between an individual simulated molecule (referred to as “molecule j*)
of mass m; with respect to the center-of-mass velocity of N other molecules will, therefors, have
the same distribution as the relative velocity between that molecule and another molecule of mass
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m,. It is a well known result that this velocity distribution is a Maxwellian distribution appropriate
to a molecule with a reduced mass, W;> Biven by

mm,
mim, (103)

“js =

Put in terms of the chi-square distribution which is used extensively in the Monte Carlo model, ujz,
(the square of the relative velocity between molecule j and the center-of-mass velocity of the other
N molecules), can be expressed

2 . kT
Uj, = ”’js xlj s (104)

where X,: is a variable selected from a chi-square distribution for the relevant three translational
degrees of freedom. [k is Boltzmann’s constant, and T is the (as yet undetermined) temperature. ]

9.2.4 Translational Energy of Relative Motion

The total translational energy of the molecules (which can be expressed as in Equations (87)
- (96) above, summing over all N+1 molecules) can be algebraically recast in a form which
specifically shows the contribution of relative motion between molecule j and the N other
molecules. Specifically,

Enyi = Ey + %n,-tnf. . (105)

In Equation (105), Ey is the trunslutional energy which would result it only the N molecules were

included in the previous sums, and Ey., is the value obtained with all of the molecules, The . = s
factor in the difference, n;, is the “reduced weighted mass” between molecule j and all of the other ~° 5

molecules, i.e.,

S;Wm
S L i IR 106
-
"j S,+ijj ' ( )
where S, is us defined in Equation (87), applying the sum to the N remaining molecules. It is :

crucial to note thut m,, as defined in Equation (102), determines the distribution of relative
“velocities between m and the other N molecules; but n;e s defined above, determines the amount




of energy associated with that relative velocity. Combining Equations (104) and (105) gives the
translational energy contribution, E‘j, as
E, = (3kT)LX, (107)
3} 2 “J’ o

Note that this effectively gives a weighting factor associated with the translational energy
contribution of molecule j of /.

9.2.5 Determination of Temperature

The internal energy associated with molecule j, Ej, can be represented simply by

By = (FkTWX; (108)

where X, is a variable selected from a chi-square distribution with the number of degrees of
freedom appropriate to molecule j's internal modes. As discussed above, this process is then
repeated sequentially for each molecule in the cell. Note that *N* in the above relations refers to
all remaining molecules which have not had their energies determined yet. This means that m,, for
instance, changes with each molecule since it Is defined via a sum over these remaining molecules.
The last molecule has no translational energy of relative motion associated with it since there are no
remaining molecules for it to be moving with respect to. It does, of course, have internal energy.

Summing all of the Ey and E;; and equating them to the known total encrgy E,,, (as given in
Equation (98)) then determines the temperature of the system. It is noteworthy that this
temperature is not determined just by the total energy of the system, but also by the statistical
sampling process. This is consistent with the fuct that any temperature could result in the particular
observed velocities; although some temperatures are much more likely to produce them than others.

A ~ Once the temperature is defined, then the sequentiul relutive wvelocities squared uﬁ,
(Fquation (104)) and internal energles (Equation (108)) are determined. It is then a simple matter
" to go back and apply these values to select individual molecular velocity components via the sume
. procedure described in Section 8. '
'9.3 The Number of Collisions Required to Achieve Equilibrium

The number of collisions vequired to achieve equilibrium depends on the mudel being
- employed and the criterion for equilibrium. (Equilibrium is approached asymptotically and, as
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such, could be regarded as an ideal limit which is never realized.) The model being employed, as
discussed in Subsections 3.4 and 8.3 is that of Reference 4. In this “statistical collision" model, a
fraction, a, of the collisions are taken to be "perfectly inelastic”; that is, in such collisions all
translational and rotational energy of the colliding molecules is made available for distribution to
the post-collision state vectors, taking into account the number of translational and internal degrees
of freedom. The rest of the collisions are taken to be completely elastic, with no interchange
taking place between the translational and rotational energy modes. The parameter of the model,
a, should be chosen to match available data for rotational relaxation.

Within the context of this model, the question to be addressed is how many collisions are
required in a cell before the model predicts that it is essentially in equilibrium. The question can
be made independent of « if it is phrased: “How many inelastic collisions per molecule must be
simulated before the cell can be considered to be in equilibrium?”. This question is suitable for
direct investigation with the model, and a test calculation was performed to answer it. The test
calculation indicated that the equilibration is 90% complete after approximately 3.08 inelastic
collisions (on the average) for each molecule. This seems to represent a reasonable point at which
to say that further collision simulation is unnecessary, although the cutoff is of necessity somewhat
arbitrary. This number of inelastic collisions serves as a useful benchmark in the comparison of the
collision cutoff and equilibrium aftermath approaches, and it also serves to define when the
application of the equilibrium aftermath approach is valid. :

9.4 Method Comparison

, Test runs were run where the collision cutoff approach was utilized for 3.08 inelastic

collisions per molecule. (Since a = 0.2 wus used, this corresponded to abuut 15 total collisions
- per molecule.) The time required to compute the relaxation via collisions was then compared to
the time required to utilize the equilibrium aftermuth approach. The result was that the equilibrium

- aftermath approach was almost an order of magnitude (a factor of 9) faster in achieving the same

~ result, ‘This ratio will no doubt vary with computer and specific calculuation being performed; but it
is highly likely that the equilibrium attermath will uiways come out considerably faster. 1t is for -
this reason that the method was implemcn:ed in SOCRA‘I‘ES o




10. STATISTICAL SAMPLING OF OUTPUT

10.1 General Considerations

It is safe to say that the molecular state vectors as they exist in the computer do not
comprise the usual desired output of the procedure. With rare exceptions, it is the macroscopic
quantities such as temperature, density, mean flow velocity, etc. which are of interest - not the
microscopic quantities represented by the state vector of an individual simulated molecule. The
generation of the desired output requires that the macroscopic quantities of interest be represented
in terms of statistical sums of the available microscopic quantities; and it is the main purpose of this
section to present these correspondences. All sums are kept in terms of "real” molecules and
events, i.e., the current weighting factors are included in the sums. This is essential since the
weighting factor determines the statistical importance of a given molecule, Since the weighting
factors are dynamically and unpredictably adjusted as the solution progresses, it would not be
possible to go back and add in the effect of weighting factors a posteriori.

In general, it must be decided ahead of time exactly what output is desired from the code,
and, therefore, what statistical sums should be kept to generate it. There is a vast amount of
-potential information in the simulation, and it is not reasonable to store ail possibly interesting
quantities in all runs. On the other hand, it is wasteful to completely rerun a case just because the
user decides there was an additional quantity he was interested in. The selection of output for a
given run, therefore, unavoidably requires user judgment. Once the user has decided upon the
required output, the determination of which statistical sums are required is done automatically by
the code. Care is taken to make sure that a statistical sumn is not duplicated internally if it is
required by more than one requested output quantity.

Some initial words of caution are required. By its nature, the direct simulation Monte Carlo
method works with far fewer molecules than nature does and it, therefore, exhibits considerably
greater statistical variation in its macroscopic predictions. To reduce these variations, the code is
run repeatedly for the same case, increasing the statistical base from which the macroscopic output
is derived. Useful results can usually be obtained with a modest computational effort. However,
this statement must be tempered by a realization of the convergence rate for Monte Carlo sampling.
Basically, the statistical error in the output converges as one over the square root of the sample size
(or run time). Hence, if a solution looks good, but the user decides he would like one more
significant digit (i.e., he would like the statistical error to be reduced to 0.1 times its current value)
it would require that the run time be increased by a factor of 1001 It can be seen that the desirs for
more accuracy can quickly turn the most efficient code into a money gobbling nightmare. When
using a Monte Carlo technique, one must accept some statistical scatter in the output.




10.2 Sampling of Instantanecus Volumetric Output Quantities

Instantaneous volumetric output quantities, such as density, temperature and velocity, can be
determined by examining the molecular state vectors at a particular time in the simulation. The
code pauses in the simulation and uses the molecular state vector elements to add values to the
statistical sums appropriate to the various cells and the particular time that it paused. It then
proceeds with the simulation until the next sampling time. As the code goes through its successive
runs, it stops at the same points in the simulation every time and adds to the statistical base for the
sums. (For steady state cases, it simply does it repeatedly after the initial transient has died down.)
The items listed below, with their statistical definitions, are selectable as output requests in
SOCRATES. Summations are performed over all applicable simulated molecules, which include
Nyun Separate runs.

¢ TOTAL NUMBER DENSITY

§
n = m (109)

® MEAN MOLECULAR WEIGHT

m = = (110)
® x VELOCITY COMPONENT

)

v, = 52. ()
® y VELOCITY COMPONENT
Sy |
vy ® -§; {112)

® z VELOCITY COMPONENT

. s,
vz o -s-; . (“3)
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® OVERALL TRANSLATIONAL TEMPERATURE

1 832 + S42 + 852)

ReS; 2 S6

T =

® TRANSLATIONAL TEMPERATUREIN jTH DIRECTION

1 Sg?
0TRSO

¢ INTERNAL MODE TEMPERATURE

25,

s 2
VT ReSy

where the indicated sums, S, are defined by:

S} =Ewi ’
i

E Wmvh + vE +v3)
1

$; = E Wmyy

i

g
f
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(114)

(115)

(116)

(17
(1i8)
(119)
(120)
(121)
(122)
(123)

(124)




S = E WiEj; (125)

i
and
S10 = Zwaﬁ : (126)

With the exception of Equation (110), all of the above quantities can also be defined and calculated
for any specified species. The sums are the same except that only molecules of that species are
considered. Before printing output quantities, they are always transformed to standard dimensions
from the internal dimensionless variables,

10.3 Sampling of Time Averaged Output Quantities

Some additional quantities of interest are not sampled at a separate sampling time as
described above, but rather as the simulation evolves, Examples of such quantities are collision
rates, reaction rates, mean velocities between molecules, etc. For the most part, these quantities

- depend on the relative state of more than one type of molecule, and they are by their nature
expressed as average values over a finite time interval. The formulas for calculating these
quantities are no more than event counters, and will not be included here. The following quantities
are currently available as output:

®  Mean Relative Velocity Between any Two Species;
@ R.M.S. Deviation of Mean Relative Velocity Between any Two Species;

®  Mean Product of Cross Section Times Relative Velocity Between any Two
' Species;

®  Collision Rate Between any Two Species;
®  Reaction Rate for any Chemical Reaction;
®  Reaction Rate for any Photochemical Reaction;

K Flux Rate for any Species on any Surface Element.

The sampling for all but the just of these quantities occurs in the collision simulation routines. As
pairs are considered as possible collision partners, statistics are kept to generate the first three
quantities. Statistics on collisions and reactions are kept as they occur, and the last quantity is
determined in the molecule advancement routines.

.50 -




11. INNER SOLUTION REGION PROCEDURES

11.1 Motivation For The Inner Solution

The separation into an inner and outer solution is necessitated by the physical and
computational realities of the interaction between contaminant molecules and the surrounding
atmosphere. The problem is created by the combination of the following two points: 1) In order
to describe the scattering of contaminant molecules, the solution region must extend several mean
free paths from the source of the contamination, which typically means tens of kilometers; and 2)
At the same time, in order to describe the detailed interaction between the flow field and the
specific geometry of the vehicle in question, cells must be smaller than characteristic length scales
of the vehicle. Combining these two requirements in a three dimensional flow situation means that
many more cells and simulated molecules are required than is computationally feasible. However,
the two requirements naturally lend themselves to two distinct solutions, which are referred to as
the "inner" and "outer" solutions. The outer solution determines the scattering of the contaminants
by the atmosphere and doesn’t require solution cells which are small compared to the vehicle, since
the characteristic length scale for this scattering is much larger than the vehicle. Hence, the outer
or scattering solution can be carried out first, with all contaminant sources assumed to be merely at
the origin. The outer solution then determines the rate at which both scattered and atmospheric
molecules will be approaching the vicinity of the vehicle, and this (rather than the undistutucd free
stream) can then be used as a boundary condition for the inner solution, allowing its outer
boundaries to extend to just beyond the vehicle,

11.2 General Considerations

The boundary conditions for solutions via the Direct Simulation Monte Carlo method
involve introducing molecules at the boundaries which have statistically correct fluxes, velocity
(distributions, and internal energles. Only the inwardly directed portion of the velocity distribution
function is relevant; the outward portion follows naturally from the solution,

For a general nonequilibrium flow, it can be a formidable task to determine the complete
inward velocity distribution at the boundaries so that molecules may be introduced properly.
- Generally, therefore, the boundaries are merely placed far enough away from the interaction region
50 that the flow may be assumed to be in equilibrium at the boundaries. Since an equilibrium flow
has a velocity distribution which is characterized by the well known Maxwell-Boltzmann function,

~ it is then straightforward to determine a statistically correct procedure for molecule introduction.

Such a procedure is clearly not adequate for the inner solution described above. The
- ambient flow is likely to be disturbed near the vehicle where the inner solution boundary is to be
placed, and the flux of scattered contaminants back into the solution region would be completely
lost if the normal boundary condition were used. The procedure that is used, therefore, is to gather
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relevant statistics in the outer solution, and devise a boundary condition for the inner solution
which is consistent with these statistics.

11.3 Velocity Variations

11.3.1 Assumed Form of the Velocity Distribution Function

The procedure that is being adopted is to use a generalized form of the equilibrium
distribution function. The generalizations that are applied are as follows: 1) Each species is
allowed to have its own mean flow velocity. (In equilibrium, all species would have the same
mean velocity.) 2) Each species is allowed to have its own translational temperature, and this
temperature is allowed to be distinct for the three coordinate directions. (In equilibrium, all
species would have the same temperature, and it would not vary with coordinate direction.) 3)
Each species is allowed its own internal mode temperature. (In equilibrium, this temperature
would be the same for all species, equal to the common translational temperature.) Quantitatively,
it is assumed that for the ith species, the velocity distribution in the jth direction follows the
functional form:

£38p) = (o Vmexpl-ad (uy- ) (127)
where
ay = Vm/@RGT) . (128)

In these relations, m; is the molecular weight of the ith species in atomic mass units, Ry is the
universal gas constant, and Ty and Uy represent the translational temperature and mean velocity,
respectively, of the ith species in the jth direction. By definition of f;, the probability of a
~ molecule of species | having a velocity component in the jth direction between uy and uy+4uy is
fy(ug)auy. Under this assumption, therefore, the equilibrium boundary condition can be applied
for each species (Including those not present in the free stream) by determining the parameters Uy
- and Ty, as well as the effective density of the species, ;.

11.3.2 Available Statistics From the Outer Solution

_ The outer solution will have the location of the outer boundary of the inner solution

specified. This boundury will be subdivided into rectangular elements which may (but nead not
- necessarily) be particular cell boundaries for the outer solution. For euch rectangular element,
whenever a molecule crosses that boundary in the outer solutivn, moving into the inner solution
reglon, statistics can be kept. In addition to just counting the molecules of each species, it is also
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possible to keep velocity and spatial moments of the flux of each species. This section will
demonstrate how velocity moments can be used to determine the parameters Uy and Ty, as well as
the effective number density n;, appropriate to a particular rectangular element. Subsection 11.4
will deal with spatial variations along the rectangular element.

Let T, be the inward normal at the surface element and 7, and T, represent two other unit
vectors such that T, T, and T; form an orthonormal triple of unit vectors. Depending on the
orientation of the rectangular element, each of these unit vectors will be either aligned or
anti-aligned with one of the three basic solution unit vectors: T,, T, and T,. Keeping statistics in
the T, and T directions is straightforward, following the procedures described in the previous
section. The more difficult task is to determine the effective equilibrium gas quantities for the
direction aligned with the normal of the surface element, 1,. As molecules cross the boundary
segment, the following statistics (among others) can be kept for each species:

a) §;; The flux of species i in molecules/(cm®s).
b) <uy;;>; The mean value of the ist velocity component.
¢) < u?, >, The mean square value of the Ist velocity component.

Note that the sampling is applied only for molecules which cross the boundary with a positive

-velocity component in the T direction, so that all molecules included in these statistics will by
definition have a positive value of u;;. Since only molecules with a positive u;; component are
included in the statistics, and since the molecules with large u;; components will tend to flux across
the boundary faster and be counted with a larger weight, it is not the case that <u; > is equal to
- Wy

‘1133 Representation of Available Statistics

For a Maxwellian velocity distribution (Equation (127)), it is pussible to directly compute
the expected values of the available statistics, The results are:

“ .
q= naguufn(“n)d"n- ' (129)
[ ]
. n
<y > = 'q‘: iyt gy (130)
H
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and

-]
n:
<> = 'q" 5“?1fi1(“i1)d“u . (131)
‘o

Substituting the expression for f;; given in Equation (127), and performing a little algebra, these
expressions can be written:

_ nli(-w)

alrorv ol (132)

(133)

(134)

| where the speed ratio, w, is given by

Wwes a“Fn (135)
and the integrals 1, are defined by
W = fEobepcine . 136
A

The first few I, are direétly evaluated to give:

L) = exp(H) - bY'F erfeth)] (131
®) = $1:2b exp() + (1 + BAVF erfeld)] (138)
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and

1;0b) = %(2(1 +b?) exp(-b?) - b2b2+3)V'T erfe(d)] . (139)

11.3.4 Inversion to Determine Equilibrium Parameters

Combining Equations (133) and (134), it is possible to get a relation that involves only the
sampled variables and the speed ratio, viz:

I, (-w)l3(-w)

rm <l >/(<uy>P= -
il Ui\ (Lw)P

(140)

Since r, the ratio of the mean square velocity to the square of the mean velocity for molecules
fluxing across the rectangular segment, is a function only of w, it is a useful place to start the
inversion. As can be seen from Figure 4, r is monotonically decreasing with increasing w, going
from an asymptote of 1,5 for w — -0 to an asymptote of 1.0 for w =» + 00, Since the function is
monotonic, it can be inverted unambiguously as long as r falls within the interval (1.0 < r < L.5).
Although the functional form of r(w) is somewhat complex, making an analytic inversion
impossible, a Newton-Raphson iteration starting at the center of the curve converges rapidly. Since
this calculation is only done once for each segment to determine the boundary condition
parameters, the time required fot' this inversion is negligible.

Once w is determined, then Equation (133) can be used to determine the corresponding
_ value of &y, which defines T;; via Equation (128). w and a;; determine W;, via Equation (135),
and Equation (132) then determines n;,

11.3.5 Possible Errors

In some cases, the procedure described above will not work directly, since the sampled
- value of r may exceed 1.5. This can be demonstrated by considering the simple case of two
molecules, with velocities u; and u,. The value of r sampled in this case approaches 2.0 as either
molecule’s velocity becomes much larger than the other. Hence, it is distinctly possible that values
of r in excess of 1.5 will be encountered, either through statistical error or the failure of the
assumption of an equilibrium type velocity distribution. (It is mathematically impossible to get a
-value of r less than 1.0, though numerical error might conceivable cause it in extreme cases.)

To handle these cases, as well as deal with some numerical problems that occur for large
-negative w, the inversion described in the previous section is performed only if the resulting value
of w is within the runge (-5 < w < +5). If r is such thut w would full outside of that range, w is
set equal to +5 (depending on whether ¢ is too large or too small), und the inversion procedure
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described above is then otherwise followed. The effect of this is that the derived boundary
condition will match the statistically observed flux and mean velocity, but will no longer match the
mean square velocity.

11.4 Spatial Variations

The rectangular element described in Subsection 11.3.2 will typically be a cell boundary in
the outer solution. When the boundary condition is applied in the inner solution, it may comprise
the boundary of several cells, since the inner solution will by definition have a finer cell mesh than
the outer solution. It would be possible, of course, to merely apply the same boundary condition to
each of the corresponding inner solution region cells, but with a little additional work it is possible
to include some realistic spatial variation in the rectangular region, which may be used to provide
adjacent inner region cells with slightly different boundary conditions. The procedure to do this is
described in this section. This procedure allows for a spatial variation in flux (and therefore
effective number density) along the rectangular region, but the velocity distribution is assumed to
be spatially constant.

11.4.1 Reduction to Scaled Variables

. Let the rectang{e of igteres} be represented by the general variables X and ¥, such that
(X, < X < X,) and (¥, < ¥ < V,). Then it is convenient to introduce the scaled variables, X
and Y, such that

% -,
o142 4
 Xmeld TR (141)
and
,v..uz“?' . (142)

‘The scaled variables have the advantage that they each truverse the range of -1 w +1.

- 11.4.2 Spatial Moments

As molecules truverse the rectungular reglon in question, it is possible to calculate the X and
Y values at which a given molecule crosses it. Sums of these vilugs can also be kept, so that a
statistical determination cun be mude of the averuge X value, <X >, the average Y value, <Y>,
and the average product of the two, <XY>. At the same time, o course, the average flux across
~ the rectangle will also be determined. ‘
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11.4.3 Analytic Representation of Sampled Moments

Let j(X,Y) be flux distribution in the rectangular region (molecules per unit area per unit
time). The number of molecules crossing the rectangle per unit time, N, is therefore given by:

N JOGY) dXdY . (143)

|

.-G-—;..

The average sampled values given in the previous section can therefore be represented via

| 1
iN S S J(X,Y) XdXay (144)
-1
| I
<Y> = %l-”l JX.Y) YdXdY (145)
o} ol
and
| .
<Xy> =+ S S JX,Y) XYdXdY | (146)
l ) .

1144 Assumed Form for the Flux Distribution

1t is assumed that the flux distribution can be adequately represented by a linear distribution,
viz. : ,

JOGLY) = Nag + 8,X + %Y + XY) . (147)

"~ When this fomi is substituted into the ihtemls defined in Equations (143) - (146), there results:

w=1 . | (1e8)
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a = 3 , (149)
I<Y>
=" (150)
and
ay = 2K (1s1)

Hence, under the assumption of a linear flux distribution, the spatial moments lead immediately to
the corresponding linear coefficients.

11.4.5 Possible Problems

Since the flux that is discussed above is the one-way flux (i.e., only counting molecules
traveling in one direction across the rectangular segment), it is by definition a guantity which can
never be negative. However, again due to either statistical error or the invalidity of the assumed
functional form, it is conceivable that the distribution derived above could become negative at some
subregion of the rectangle. If this does occur, corrections must be made to the coefticients.

. In order to search for a negative subregion, it suftices to investigate the corner values, since
the maximurh and minimum must occur on the corners for a finear fit. The corner values are given
: dlrectly by

Cyy = JeEel) = N -8y -8 +uy) - (152)

=it s Nag-u; + a3-239) , : (153)

Jag = i+ 1,0) = Nag + a, - a3 - ay) ' 7 (154)
o

B ju w (+],.41) ra_ﬁ(aa a4ty tay) v- (155)

If a negative value is found, then use can be made of the inverse rdaumu w;yi..h Atv dn. 4‘ ’lﬁ‘ﬂ -
fuuction of the corner valuss, i.e., T . c
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3= ;I'i"('*‘ju +ipp it (156)

1,. . . .
ay = (i -diz + o + ) 157
i 4N(J" 2ty tin) | (157)
= ‘:ﬁ('in + jia-lay + i) (158)
and
= Tlr‘::(ﬂ“ “lipcia tin) (159;

If one of the corner values is negative, then it can be artificially increased to zero, while one third
the amount added to the negative corner is subtracted from each of the other corner values. This
procedure keeps i, and therefore the integrated total flux, constant. Once the corner values have
been adjusted so that none are negative, Equations (156) - (159) give the corresponding linear
coefficients.. :




12.  COMPARISON OF SHUTTLE ENGINE FIRINGS IN SPACE TO CODE
PREDICTIONS

12.1 Introduction

This section describes a model/data comparison for some visible data taken by the Air Force
Maui Qptical Station (AMOS) of 870 Ib. shuttle RCS firings at altitudes around 320 km. The data
are unique in that they were obtained for three angles of attack: 0°, 90°, and 180°. The sequence of
events was to fire in one directioa for three seconds and then shut down for five seconds before
firing another engine in another direction. The data which are being utilized in this paper involve
total visible plume intensity as measured by an S-20 photocathode, and its spectral dependence as
measured by a spectrograph. In particular, we are concentrating on a peak in the spectrum at 6300
A which is being attributed to the forbidden transition between the O('D) excited electronic state
and the OCP) ground state. This emission is intriguing because the long (= 194 seconds?)
radiative lifetime of the excited state would normally be associated with a very weak, spatially
diffuse signature. However, the quenching of the O('D) state is sufficiently rapid at this altitude
that the net lifetime of the excited state is more in the vicinity of one second, providing a much less
diffuse signature than would exist in the absence of quenching. Furthermore, the abundance of
atomic oxygen is sufticient to produce 1 measurable signature even at this reduced lifetime.

The existence of a single set of well characterized unsteady data as a function of angle of
attack provides an excellent opportunity to do model comparisons with the hope of discerning the
underlying mechanism(s). Two mechanisms were hypothesized as potentially being responsible for
this emission: the charge exchange reaction between atmospheric O ions and HaO from the
exhaust, and the direct collisional excitation of the O('D) state. These data provide a stressing
validation case for the SOCRATES code, as well as an opportunity to learn about 4 new visible
plume emission source.

12.2 Experiment

The experiment consisted of firing specific 870 Ib. PRCS liquid-fuel (monomethyl
hydrazine-N,Q,) engines while the shuttle orbiter passed over AMOS atop Mt Haleakals, Maui,
HI(21°N, 204°E, 3000 m altitude). The engines were fired for angles of attack of 180°, 90°, and 0°
with respect to the ambient, which will be referred to as ram, perpendicular, and wake burns,
respectively. The shuttle was in total darkness (the solar and lunar depression angles at the shuttle
were 30° and 59°, respectively). Imagery data were obtained using 8" and 22" acquisition
telescopes. Visible spectral data were obtained using a spectrograph with its own foreoptics
mounted on the main telescope. The spectral, spatial, and temporal properties of the emissions
were measured as a function of angle of attack of the exhaust products by the atmosphere. The
total plume intensity for an S-20 photocathode was estimated using the 6° GEODSS telescope which
had a fixed field of view. This tield of view was sufficient to encompass the entire plume, and its
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fixed nature enabled known stars to be used for calibration. The experiment is described in more
detail in Reference 10.

12.3 Data Reduction

On the basis of comparing against a known star in the GEODSS field of view, the peak total
plume emission for an $-20 photocathode was estimated to be 150, 80, and 12 W/sr for the ram,
perpendicular, and wake burns, respectively. An average spectrum shows a substantial NH peak
around 3360 A, a peak around 6800 A due to second order diffraction of the NH(A-»X) fundamental,
as well as several other peaks. For the present purposes, the quantity of interest is the total
emission from the 6300 A atomic oxygen line. To estimate this, the spectrum was multiplied by an
S$-20 response curve and integrated over the spectral range. The ratio of the integral between 6100
and 6500 A to the total integral was estimated to be the fraction of the total $-20 response which was
due to the 6300 A transition. For the present case this ratio came out to be 12%. It should be noted
that a more proper approach would be to do the same averaging for spectra resulting from burns in
the three directions, since the varying available kinetic energy may shift the relative magnitudes of
the emission peaks as a function of angle of attack.

The atomic oxygen Green line (O(*S)~O('D)) at 5577 A is not observed in any of the burns,
Based on the increased activation energy required for excitation of the O('S) state this seems
reasonable. The O('S) lies at 4.2 eV above the O(*P) ground state as compared to 2.0 eV for the
O('D) state. For the 0 and 90 degree burns the maximum available collisional energy is not
sufficient to reach the O('S) level, At 180 degrses there is enough collisional energy to excite the
Green tine emission, but it is still expected to be less than the Red line signal. The issue of the
relative Green line intensity for the recro-fire case is planned for a future investigation.

12.4¢ Modeling Approach

The atmospheric and exhaust mole fructions of the species considered in the calculations are
given in Tuble 2. The modeling efforts focused on slinulating the overall character of the plumes
in the three orientutions, and in trying to understand the 6300 A duta feature, which is being
~ aisributed to the forbidden transition between the O('D) excited stute and the O(P) ground state.
Since the O('D) state has a long radiative lifetime, it was expected that quenching would be an
essential element of the calculations. The following rate constants (in ¢m®/s) from the literature

were used: '

O('D) + Ny~ 0 + N, k! = 2.3x10'1 (160)
O('D)+0-0+0 k'? = g.8x10'" (161)
O('D) + H,0 - 204 k'3 = 2.2x10°10 (162)

.62 -




Table 2. Concentrations of Species Carried in the Model Calculations.

Atmospheric Exhaust
Species Mole Fraction Mole Fraction
0 0.9076 0.0
N, 0.0919 0.309
H, 0.0 0.187
H,0 0.0 0.332
CO 0.0 0.136
CO, 0.0 0.036
o* 0.0005 0.0

-Published rate constants or cross sections for the collisional excitation of the O(*D) state could not
be found, so microscopic reversibility was invoked to estimate the following excitation rate
constants:

22800

0+N~O(D) + N, k= 1.28x10 exp(- 2222, (163)
0+0-0(D)+0 k=490 exp(-252) (164)

Reaction (163) was also assumed to apply for the other major plume constituent, H,0. The charge
exchaage mechanism for producing O(*D) was represented by

11600) ‘

O* + Hy0=O('D) + Hy0* &k = 3.23x10°T 0 Mexp(-—3

(165)
The rate constant for Reaction (165) was taken from measured values' with the activation energy
- adjusted to reflect the additional energy required to create the G(*D) rather than the O(P)
product, ' '

12.5 Results And Conclusions

Geayscale plots are given in Figures 5-7 showing the culeulated evolution of the 6300 A ram
plume radiance as a function of <ime. There is a substantial qualitative resemblunce to the data in
these plots, though a quantitative comparison of these images is ditficult. Recall that the engine
~ shuts off at 3.0 seconds, so the spreading and reducing of the signuture at 4.0 seconds in Figure 7

s to be expected. The total calculated 6300 A rudiant intensity 5 a function of time Is given in
Figure 8 for the three angles of attuck. If the peak values from this tigure ure compared to the
- deduced data values, then the result is the comparison shown in Figure 9. The agreement in Figure
9 is probably fortuitously good, since it is doubtful that even the input quuntitivs were known that
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accurately. Nevertheless, the agreement is impressive and strongiy supportive of the hypothesized
mechanisms.

Given confidence in the basic description, it is then possible to use the model to get more
quantitative and qualitative understanding of the underlying physics. The major difference to be
expected in the excitation mechanisms is the activation erergy required; the charge exchange
mechanism requires a lower activation energy and, therefore, would be expected to be relatively
more important for lower angles of attack. This is illustrated in Figures 10-12, where the
integrated excitation rate of the O('D) state is shown as a function of time for 180°, 90° and 0° angles
of attack respectively. The separate contributions are shown for the two mechanisms in the figures,
and it can be seen that the charge exchange mechanism is calculated to contribute 3.2% as much as
the collisional excitation mechanism at 180°, 3.9% at 90°, and 12.7% at 0°. (These comparisons are
made at the end of the burn.) Hence, the general trend of increasing importance of charge
exchange with decreasing angle of attack is confirmed, though it should be noted that the charge
exchange rate is never calculated to be a large fraction of the total signature, so it can not be
confidently deduced that that portion of the calculation is being carried out properly.

Given the lower activation energy requirement of the charge exchange mechanism, it might
also be supposed that it would gain in importance for the shutdown transient as the flow energy
decreases. As can be seen in particular for 0° in Figure 12, the exact opposite is true - the relative
importance of the charge exchange mechanism drups by over four orders of magnitude after
shutdown. The reason for this precipitous drop is shown in Figure 13, which shows the total
number of water molecules in the solution region as a function of time. The number of water
- molecules understandubly drops by several orders of magnitude since the wind and the exhaust
direction are coaligned. Within a second it is to be expected that the vast majority of the water
molecules, initially traveling at 3.5 km/s and generally accelerated by the free stream, will tend to
~* leave the solution region which only extends four kilometers downstream of the exit.

The question remains, however, us to the origin of the collisional excitation after the plume
has largely departed the soluiion reglon. The explanation for this is given in Figure 14, which
“shows the contributions of the various types of collisions to the total collisional excitation rate.
While the thruster is on, most of the excitation comes from O-N, collisions. This is to be
expected, since the rate constant for Reaction (1) is quite high, and N, is a major plume species
with a fairly large molecular weight (and therefore relative collision energy). However, after
~ shutdown the curves cross, and O-O collisions become the dominamt source of excitations. The
0-H,0 collisions do drop in importance as the plume leaves the solution region, but the O-N,
collisions do not drop nearly as muck. This is because N, i5 also present in the atmosphere, so it i3
not leaving the solution region in the same way that the HsO is. The conclusion is that the
shutdown transient is dominated by continued collisions within the atmosphere that remaing
* disturbed for a while ufter the engine shuts down, It is u fundumental difference attributable o
looking &t radiation from an atmospheric rather thun a plume species, and it would have been
~difficult to guess this effect without 4 comprehensive model caleulation. The same switch of
important ¢ollision cluss can ba seen in Figure 15 for the 180° cuse, but the magnitude of the effect
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is not as important here. The reason is that for a retrofire case the plume molecules remain in the
solution region longer since they are initially heading into the free stream and then get turned
around and travel backwards relative to their initial motion. The increased residence time of plume
species within the solution region allows atmosphere-plume collisions to retain their importance for
a longer period of time after shutdown.

The question of excited state lifetime is addressed in Figure 16. This figure shows the
overall contributions of collisional quenching and radiative decay to the disappearance of the
O('D) state as a function of time for the 180° case. While the engine is in operation, an O('D)
atom is about ten times as likely to suffer collisional quenching as to experience radiative decay.
Hence, the effective excited state lifetime is about twenty seconds while the engine is operating, on
the average. If just the brightest portion of the plume is inspected (where the collision and
quenching rates are particularly high) the deduced species lifetime is more like 1.2 seconds. The
conclusion is that the actual species lifetime will depend greatly on where in the plume the species
is produced. After shutdown, the two overall depletion mechanisms become comparable, and the
O('D) is predicted to have a lifetime on the order of 100 seconds. Again, this number would be
expected to vary depending on how collisional the region in which it is formed is.
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13. SUMMARY

The present version of the SOCRATES code should be regarded as the latest step in an
ongoing development project. Particular emphasis has been paid to making it easy for a non-expert
to use, while sacrificing neither riger nor flexibility. Future versions are expected to allow for a
gas dynamic interaction with the solid bodies as well multiple source types. Even without these
features, the present model is a powerful tool which can be used for data analysis and first
principles predictions.

_'The sample calculations present some important insight into visible emission from plumes in
the 6300 A region. They indicate that collisional excitation of the electronic state is the dominant
mechanism explaining the observed emission. This emission is particularly significant since it
arises from the atmosphere itself, so it is therefore largely independent of fuel type.
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